
INTEGRATING SECURITY
INTO THE DEVOPS
WORKFLOW
Module Overview:
This training module will help you understand how to identify and
manage vulnerabilities throughout the software development
lifecycle. By incorporating security practices seamlessly into your
development workflow, you’ll be able to mitigate risks without
compromising on productivity or user experience. The concept of
integrating security directly into DevOps (often referred to as
DevSecOps) will be woven throughout the module, highlighting the
need for continuous security practices.

92%
of companies experienced a
breach last year due to
vulnerabilities of applications
developed in-house.

Objectives:
Understand the OWASP Top 10

Understand how DevSecOps practices ensure continuous monitoring of
vulnerabilities to secure the evolving application environment.

CONTINUOUS VULNERABILITY
DETECTION

OWASP TOP 10
The OWASP Top 10 is a standard awareness document for developers and web
application security. It represents a broad consensus about the most critical
security risks to web applications.

Broken Access Control
Cryptographic Failures
Injection
Insecure Design
Security Misconfiguration
Vulnerable and Outdated Components
Identification and Authentication Failures
Software and Data Integrity Failures
Security Logging and Monitoring Failures
Server-Side Request Forgery

The OWASP Top 10 Project can be viewed here. This list is current as of the time of publication. OWASP expects to release their next version in 2025. The following resources
have been taken directly from OWASP and you can view additional information about each risk at the link at the bottom of the page

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/www-project-top-ten/

BROKEN ACCESS CONTROL
Access control enforces policy such that users cannot act outside of their intended
permissions. Failures typically lead to unauthorized information disclosure,
modification, or destruction of all data or performing a business function outside
the user's limits.

Access control is only effective in trusted server-side code or server-less API, where
the attacker cannot modify the access control check or metadata.

Example Attack Scenario

Learn more about Broken Access Control here

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/

CRYPTOGRAPHIC FAILURES
The first thing is to determine the protection needs of data in transit and at rest.
For example, passwords, credit card numbers, health records, personal information,
and business secrets require extra protection, mainly if that data falls under privacy
laws, e.g., EU's General Data Protection Regulation (GDPR), or regulations, e.g.,
financial data protection such as PCI Data Security Standard (PCI DSS).

Example Attack Scenarios

Learn more about Cryptographic Failures here

https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/

An application is vulnerable to attack when:

User-supplied data is not validated, filtered, or sanitized by the application.
Dynamic queries or non-parameterized calls without context-aware escaping are used directly in
the interpreter.
Hostile data is used within object-relational mapping (ORM) search parameters to extract
additional, sensitive records.
Hostile data is directly used or concatenated. The SQL or command contains the structure and
malicious data in dynamic queries, commands, or stored procedures.

Some of the more common injections are SQL, NoSQL, OS command, Object Relational Mapping
(ORM), LDAP, and Expression Language (EL) or Object Graph Navigation Library (OGNL) injection.

Preventing injection requires keeping data separate from commands and queries

INJECTION

Example Attack Scenario

Learn more about Injection here

https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A03_2021-Injection/

Insecure design is a broad category representing different weaknesses, expressed as “missing or
ineffective control design.” Insecure design is not the source for all other Top 10 risk categories.
There is a difference between insecure design and insecure implementation. We differentiate
between design flaws and implementation defects for a reason, they have different root causes
and remediation. A secure design can still have implementation defects leading to vulnerabilities
that may be exploited. An insecure design cannot be fixed by a perfect implementation as by
definition, needed security controls were never created to defend against specific attacks. One of
the factors that contribute to insecure design is the lack of business risk profiling inherent in the
software or system being developed, and thus the failure to determine what level of security
design is required.

INSECURE DESIGN

Example Attack Scenario

Learn more about Insecure Design here

https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A04_2021-Insecure_Design/

The application might be vulnerable if the application is:

Missing appropriate security hardening across any part of the application stack or improperly
configured permissions on cloud services.
Unnecessary features are enabled or installed (e.g., unnecessary ports, services, pages, accounts, or
privileges).
Default accounts and their passwords are still enabled and unchanged.
Error handling reveals stack traces or other overly informative error messages to users.
For upgraded systems, the latest security features are disabled or not configured securely.
The security settings in the application servers, application frameworks (e.g., Struts, Spring, ASP.NET),
libraries, databases, etc., are not set to secure values.
The server does not send security headers or directives, or they are not set to secure values.
The software is out of date or vulnerable (see A06:2021-Vulnerable and Outdated Components).

SECURITY MISCONFIGURATION

Example Attack Scenario

Learn more about Security Misconfiguration here

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/

You are likely vulnerable:
If you do not know the versions of all components you use
(both client-side and server-side). This includes components
you directly use as well as nested dependencies.
If the software is vulnerable, unsupported, or out of date. This
includes the OS, web/application server, database
management system (DBMS), applications, APIs and all
components, runtime environments, and libraries.
If you do not scan for vulnerabilities regularly and subscribe to
security bulletins related to the components you use.

VULNERABLE AND OUTDATED COMPONENTS

Example Attack Scenario

Learn more about Vulnerable and Outdated Components here

If you do not fix or upgrade the underlying platform, frameworks,
and dependencies in a risk-based, timely fashion. This commonly
happens in environments when patching is a monthly or
quarterly task under change control, leaving organizations open
to days or months of unnecessary exposure to fixed
vulnerabilities.
If software developers do not test the compatibility of updated,
upgraded, or patched libraries.
If you do not secure the components’ configurations (see
A05:2021-Security Misconfiguration).

Every organization must ensure an ongoing plan for monitoring, triaging, and applying updates or configuration changes
for the lifetime of the application or portfolio.

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/

Confirmation of the user's identity, authentication, and session management is critical to protect against authentication-
related attacks. There may be authentication weaknesses if the application:

Permits automated attacks such as credential stuffing, where the attacker has a list of valid usernames and passwords.
Permits brute force or other automated attacks.
Permits default, weak, or well-known passwords, such as "Password1" or "admin/admin".
Uses weak or ineffective credential recovery and forgot-password processes, such as "knowledge-based answers,"
which cannot be made safe.
Uses plain text, encrypted, or weakly hashed passwords data stores (see A02:2021-Cryptographic Failures).
Has missing or ineffective multi-factor authentication.
Exposes session identifier in the URL.
Reuse session identifier after successful login.
Does not correctly invalidate Session IDs. User sessions or authentication tokens (mainly single sign-on (SSO) tokens)
aren't properly invalidated during logout or a period of inactivity.

IDENTIFICATION AND AUTHENTICATION FAILURES

Example Attack Scenario

Learn more about Identification and Authentication Failures here

https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/

Software and data integrity failures relate to code and infrastructure that does not protect
against integrity violations. An example of this is where an application relies upon plugins,
libraries, or modules from untrusted sources, repositories, and content delivery networks (CDNs).
An insecure CI/CD pipeline can introduce the potential for unauthorized access, malicious code,
or system compromise. Lastly, many applications now include auto-update functionality, where
updates are downloaded without sufficient integrity verification and applied to the previously
trusted application. Attackers could potentially upload their own updates to be distributed and
run on all installations. Another example is where objects or data are encoded or serialized into a
structure that an attacker can see and modify is vulnerable to insecure deserialization.

SOFTWARE AND DATA INTEGRITY FAILURES

Example Attack Scenario

Learn more about Software and Data Integrity Failures here

https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/

This category is to help detect, escalate, and respond to active breaches. Without logging and monitoring,
breaches cannot be detected. Insufficient logging, detection, monitoring, and active response occurs any time:

Auditable events, such as logins, failed logins, and high-value transactions, are not logged.
Warnings and errors generate no, inadequate, or unclear log messages.
Logs of applications and APIs are not monitored for suspicious activity.
Logs are only stored locally.
Appropriate alerting thresholds and response escalation processes are not in place or effective.
Penetration testing and scans by dynamic application security testing (DAST) tools (such as OWASP ZAP) do
not trigger alerts.
The application cannot detect, escalate, or alert for active attacks in real-time or near real-time.

SECURITY LOGGING AND MONITORING FAILURES

Example Attack Scenario

Learn more about Security Logging and Monitoring Failures here

https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/

SSRF flaws occur whenever a web application is fetching a remote resource without validating
the user-supplied URL. It allows an attacker to coerce the application to send a crafted request to
an unexpected destination, even when protected by a firewall, VPN, or another type of network
access control list (ACL).

As modern web applications provide end-users with convenient features, fetching a URL
becomes a common scenario. As a result, the incidence of SSRF is increasing. Also, the severity of
SSRF is becoming higher due to cloud services and the complexity of architectures.

SERVER-SIDE REQUEST FORGERY

Example Attack Scenario

Learn more about Server-Side Request Forgery here

https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/

Why Continuous Monitoring is Essential

In DevOps workflows, the pace of development means that
vulnerabilities can be introduced at any time, from initial
code commits to deployment. Therefore, automated,
continuous vulnerability scanning and testing are critical
components of a secure DevOps pipeline.

DevOps Integration of Security Tools:

Automated Scanning in CI/CD Pipelines: Integrate tools
like SAST and DAST into your Continuous
Integration/Continuous Deployment (CI/CD) pipelines to
scan code and applications automatically with each
commit and deployment.
Infrastructure-as-Code (IaC): Ensure secure
configurations through automated tests and compliance
checks, preventing security misconfigurations at the
infrastructure level.

KEY TOOLS

Automatically review and provide real-time
feedback on code quality and vulnerabilities.

Vulnerability scanning during builds.

BEST PRACTICE TIP
Ensure that vulnerability scanning is part of every
pull request and deployment stage to catch issues
early without interrupting development flow.

Objectives:
Comprehend the importance of prioritizing vulnerabilities based on their severity,
application risk, and business impact.

Apply DevSecOps principles to balance security with the speed of development by
adopting risk-based vulnerability management strategies.

RISK-BASED VULNERABILITY
MANAGEMENT

Prioritizing Vulnerabilities

Not all vulnerabilities pose the same level of risk. In a
high-speed DevOps environment, it's essential to
prioritize the vulnerabilities that matter most, based on
their severity and potential impact on your systems and
users.

Risk Profiling in DevOps:

Assign risk scores to vulnerabilities based on the
application’s function and the potential business
impact.
Continuously assess vulnerabilities as part of your
development pipeline, adjusting security measures as
risks evolve.

How DevOps Teams Can Mitigate Risks:

Proactive Management: Automate the identification
of vulnerabilities early in the development lifecycle and
ensure proper patching mechanisms are in place.
Collaboration Between Teams: Encourage
collaboration between security and development
teams to balance security needs with functionality.

Tips for Triaging Vulnerabilities:

Prioritize on Business Impact: Code analysis and
prioritization based on business impact
Exploitability: Tools like like EPSS can help you
understand the likelihood a vulnerability will be exploited

ACTIVITY

Organize an
Escalation of
Privledge game with
your team. Get the
cards here!

Pick one of the
OWASP top 10 and
review some of your
recent code with it in
mind. What could you
have done differently?

Security is not a standalone process, but one that
should be integrated into the entire DevOps
lifecycle. By embedding continuous vulnerability
detection and management into every phase of
development, organizations can maintain a
secure application environment without
compromising speed or agility. From using
automated scanning tools to fostering
collaboration between development and security
teams, DevSecOps practices ensure
vulnerabilities are detected and addressed
quickly, leading to stronger applications and a
more resilient security posture.

CONCLUSION

RESOURCES

Check out the OWASP Top 10

Understanding Vulnerability Management

Learn about the OWASP DevSecOps
Framework

What is DevSecOps

Check out the World's Most Insecure App!

Understand how DevSecOps Impacts
different roles

Get to Know CWECut through the DevSecOps Noise!

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-devsecops-guideline/
https://owasp.org/www-project-devsecops-guideline/
https://wabbisoft.com/what-is-secdevops
https://owasp.org/www-project-juice-shop/
https://wabbisoft.com/learn-how-to-deploy-continuous-security/
https://wabbisoft.com/learn-how-to-deploy-continuous-security/
https://cwe.mitre.org/about/index.html
https://www.cve.org/

