
DEVSECOPS
FUNDAMENTALS
LEARNING MODULE

This module is designed to introduce the
fundamental concepts of DevSecOps, aimed at
helping individuals understand the importance of
building secure code as part of an organization’s
overall operational resilience.

INTRODUCTION TO DEVSECOPS

Objectives:
Understand what DevSecOps is beyond the
buzzwords

Recognize why DevSecOps and Operational
Resilience go hand in hand

What is DevSecOps: DevSecOps stands for Development,
Security, and Operations, and it integrates security into the
DevOps process. In contrast to traditional development methods
where security is introduced late in the development lifecycle,
DevSecOps ensures security is integrated from the outset.

Not implementing DevSecOps can negatively impact both
development and security:

Delayed Security Fixes: Without security integrated into the
development pipeline, vulnerabilities are often discovered late,
leading to costly last-minute fixes and increased time to
market.

1.

Increased Risk of Breaches: Failing to incorporate continuous
security practices can leave code exposed to undetected
vulnerabilities, heightening the risk of cyberattacks and data
breaches.

2.

Siloed Teams and Inefficiency: Without DevSecOps,
development, security, and operations teams may work in
isolation, causing miscommunication, slower response times,
and inefficient handling of security issues.

3.

9 10
breaches begin due to defects in code

OUT OF

DHS

UNDERSTANDING SECURITY DEFECTS

Objectives:
Understand what makes up vulnerabilities

Learn about real life translations

WHAT MAKES UP A DEFECT?

A condition in a software,
firmware, hardware, or
service component that
could become a vulnerability

Weakness
A weakness that can be
exploited by a threat
source

Vulnerability

Common Weakness
Enumeration is a
community-developed list
of common software and
hardware weaknesses

CWE
Common Vulnerability
Scoring System is a
standardized ranking
system for reported
vulnerabilities

CVSS
Common Vulnerabilities &
Exposures is a publicly
released list of known
computer security threats

CVE

REAL-WORLD EXAMPLES
Equifax (2017)

Impacting the PII of >40% of the U.S. population, this breach
started with a known vulnerability in Apache Struts (CVE-
2017-5638) which Equifax failed to patch due to a failure in
internal processes, despite internal adminstrators being
instructed to to apply the patch 2 days after its release. It
was months later that the attackers began to exfiltrate data.

Additionally, while data governance practices should have
protected against this, the attackers were able to remove
the data undetected because Equifax had failed to renew a
crucial public-key certificate 10 months earlier, preventing
their security tools from inspecting encrypted network
traffic. It was only upon the discovery of non-renewed
certificate that the breach was discovered.

Read more about the story here.

Log4j (2021)

The Log4j vulnerability, known as Log4Shell (CVE-2021-
44228), was discovered in December 2021 in Minecraft. A
Remote code execution (RCE) weakness, it allowed attackers
to take control of vulnerable systems remotely by sending a
specially crafted log message that did not require any
authentication to perform it.

Exploit code quickly appeared on GitHub. Attackers exploited
the Log4j vulnerability globally, deploying cryptomining
malware to hijack systems, using ransomware groups like
Conti for attacks, and expanding botnets such as Mirai and
Tsunami. State-sponsored actors from China, North Korea,
and Iran also leveraged the flaw for espionage, while cloud
services and enterprise platforms were targeted for sensitive
data theft and infrastructure compromise.

Read the whole story here, here and here.

VULNERABILITY EXPLOITS

https://isc.sans.edu/diary/22169
https://isc.sans.edu/diary/22169
https://www.csoonline.com/article/567833/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://builtin.com/articles/log4j-vulerability-explained
https://www.microsoft.com/en-us/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/
https://www.cbsnews.com/news/log4j-vulnerability-breach-patch/

REAL-WORLD EXAMPLES
Target (2013)

The Target breach of 2013 was one of the largest retail data
breaches in history, affecting over 40 million credit and debit
card accounts and personal information of 70 million
customers. The breach began when hackers infiltrated Target's
network through a third-party vendor, a HVAC company, by
stealing their credentials. Once inside, the attackers moved
laterally through Target's internal systems, eventually gaining
access to sensitive customer data stored in the company's
point-of-sale (POS) systems.

A critical factor in the breach was a firewall misconfiguration.
Target had firewalls in place, but these were not properly
segmented to isolate sensitive parts of the network from less
secure sections. As a result, once the attackers gained access,
they were able to move across Target’s network without
sufficient restrictions. This misconfiguration, coupled with
missed alerts from security systems, made the breach both
more severe and longer-lasting.

T-Mobile (2021)

In August 2021, T-Mobile experienced a major data breach
caused by an API misconfiguration, leading to the exposure of
personal data of over 40 million customers. The attackers
exploited an improperly secured API, which allowed
unauthorized access to sensitive customer information,
including names, Social Security numbers, birth dates, and
driver’s license details. The breach affected both current and
former customers, as well as potential customers who had
applied for credit with T-Mobile.

The API misconfiguration essentially allowed attackers to bypass
authentication mechanisms and access the data directly. Once
inside, the hackers harvested the information and later offered it
for sale on dark web forums. This breach highlighted the
importance of secure API design and proper configuration to
prevent unauthorized access.

Read more here and here.

MISCONFIGURATION EXPLOITS

https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach/
https://www.traceable.ai/blog-post/t-mobile-api-data-breach-the-api-security-reckoning-is-here

GETTING STARTED WITH
SECURE CODING

Objectives:
Adopting a threat-modeling mindset

Learn about the kinds of vulnerabilities

THREAT MODELLING
Threat modeling is a process used to identify, assess, and address
potential security risks in a system. It helps organizations understand
vulnerabilities and design safeguards to protect against potential attacks.

Adopt a Threat Model Mindset:

Integrate Security Early: Start thinking about security at the design phase by
considering potential vulnerabilities and attack vectors before writing any code.
Collaborate Across Teams: Regularly communicate with cross-functional teams
(developers, security, and ops) to identify and address threats from multiple
perspectives.
Use Threat Models for Code Reviews: Apply threat modeling principles during code
reviews to spot security flaws and address potential risks before deployment.

Objectives:
Recognize the different types of vulnerabilities and how
they impact software security during development.

Understand the role of DevSecOps in early detection and
mitigation of vulnerabilities during the coding phase.

UNDERSTANDING
VULNERABILITIES IN THE
DEVELOPMENT WORKFLOW

What is a Vulnerability?

A vulnerability is a flaw or weakness in an application
that can be exploited to compromise systems or data.
Vulnerabilities can emerge during any stage of
development and can affect the performance, security,
and reliability of applications.

Common Types of Vulnerabilities:

Injection Flaws (e.g., SQL injection)
Cross-Site Scripting (XSS)
Broken Authentication
Misconfigured Security Settings

Context in DevOps:
In a continuous development environment, such as
those used in DevOps, vulnerabilities can quickly
proliferate. Integrating automated tools to scan for
these issues during both coding and deployment
helps in identifying and addressing vulnerabilities
before they become critical.

Tools and Techniques:
SAST (Static Application Security Testing):
Scans the codebase for vulnerabilities as
developers write it.
DAST (Dynamic Application Security Testing):
Simulates attacks on the application while it’s
running, testing for exploitable vulnerabilities.

Definition: Injection vulnerabilities occur when untrusted data is sent to an
interpreter as part of a command or query. The most common form is SQL
injection, but other types include command injection and LDAP injection.
Impact: This can lead to data leakage, corruption, or unauthorized access to
sensitive information. Attackers may execute arbitrary commands or queries,
potentially controlling the system.
DevSecOps Role: By integrating security checks early, DevSecOps can help
prevent injection attacks by incorporating secure coding practices and regular
code scanning for injection flaws.

INJECTION
VULNERABILITIES

Definition: XSS occurs when an attacker injects malicious scripts into content
that is then executed by another user's browser. It exploits vulnerabilities in
web applications that don't properly validate user input.
Impact: Attackers can steal session tokens, deface websites, or redirect users
to malicious sites.
DevSecOps Role: Automating input sanitization and output encoding during
the development process helps minimize the risks of XSS vulnerabilities.

CROSS-SITE SCRIPTING (XSS)

Definition: This vulnerability arises when applications do not correctly handle
authentication tokens, session identifiers, or passwords. Attackers exploit flaws
in the authentication mechanisms to impersonate legitimate users.
Impact: Attackers can gain unauthorized access to sensitive data or functions
by hijacking user sessions or bypassing authentication altogether.
DevSecOps Role: Continuous monitoring and testing of authentication
protocols through tools in the CI/CD pipeline ensure robust protection against
such vulnerabilities.

BROKEN AUTHENTICATION AND
SESSION MANAGEMENT

Definition: Misconfigurations happen when security settings in an application,
server, or database are not implemented correctly or remain at default values.
Impact: This can open doors for attackers to exploit weak passwords, outdated
software, and unpatched systems.
DevSecOps Role: Automating configuration management and continuous
scanning for outdated components help mitigate misconfigurations.

SECURITY MISCONFIGURATION

ACTIVITY

Visit the National
Vulnerability
Database and read
some of the latest
vulnerability reports.

Read how to use
CWEs in the primer
and find how you can
use them in your job
in their user stories.

https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://cwe.mitre.org/about/new_to_cwe.html
https://cwe.mitre.org/about/user_stories.html

RESOURCES

Read about CWE

The Future of DevSecOps with AppSec

Visit the National Vulnerability Database and
read some of the latest vulnerabilities

What is DevSecOps

Understand CVSS

Why DevSecOps Has Failed to Fulfill its
Promise

Understand CVEDecoding the AppSec Alphabet Soup

https://cwe.mitre.org/about/index.html
https://wabbisoft.com/resource/wabbinar-the-future-of-devops-with-appsec-2/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://wabbisoft.com/what-is-secdevops
https://www.sans.org/blog/what-is-cvss/
https://wabbisoft.com/resource/white-paper-why-devsecops-has-failed-to-fulfill-its-promise-landing-page/
https://wabbisoft.com/resource/white-paper-why-devsecops-has-failed-to-fulfill-its-promise-landing-page/
https://wabbisoft.com/resource/white-paper-why-devsecops-has-failed-to-fulfill-its-promise-landing-page/
https://www.cve.org/
https://wabbisoft.com/what-is-secdevops

